

STRUCTURED

QUERY LANGUAGE

CONTENT

Introduction

01. Data Types

02. Data Query Language

03. Data Definition Language

04. Data Manipulation Language

05. Constraints

06. SQL Clauses

07. Operators

08. Set Operators

09. Transaction Control Language

10. Data Control Language

11. SQL Case Expression

12. String Functions

13. Number Functions

14. Null Functions

15. Date Functions

16. Psudo Columns

17. View

18. Materialized View

19. Joins

20. Sub Queries

INTRODUCTION

Structured Query Language (SQL) is a domain-specific programming

language used for managing and manipulating relational databases. It

enables users to define, retrieve, modify, and manage data stored in

tables. SQL's core functions include creating and altering database

structures, inserting and updating data, and querying for specific

information. By providing a standardized way to interact with

databases, SQL plays a crucial role in data management, enabling

users to perform tasks like data extraction, sorting, filtering, and

aggregation, making it an essential tool for developers, data analysts,

and database administrators.

What is SQL?

• SQL stands for Structured Query Language.

• SQL lets you access and manipulate databases.

• SQL became a standard of the American National Standards

Institute (ANSI) in 1986, and of the International Organization for

Standardization (ISO) in 1987.

What is DBMS & RDBMS?

DBMS, as the name suggest, is a management system which is used

to manage the entire flow of data, i.e., insertion of data or the retrieval

of data, how the data is inserted into the database or how fast the data

should be retrieved, so DBMS takes care of all these features, as it

maintains the uniformity of the database as well does the faster

insertions as well as retrievals.

RDBMS on the other hand is a type of DBMS, as the name suggest it

deals with relations as well as various key constraints. So here we

have tables which is called as schema and we have rows which are

called as tuples. It also aids in the reduction of data redundancy and

the preservation of database integrity. Relational Database

Management System is an advanced version of a DBMS.

DBMS VS RDBMS

(Data Base Management System)

DBMS

(Relational Data Base Management

System) RDBMS

DBMS stores data as file. RDBMS stores data in tabular form.

Data elements need to access

individually.

Multiple data elements can be accessed

at the same time.

No relationship between data Data is stored in the form of tables

which are related to each other.

It stores data in either a navigational or

hierarchical form.

It uses a tabular structure where the

headers are the column names, and the

rows contain values.

It deals with small quantity of data. It deals with large amount of data.

Examples for DBMS VS RDBMS

XML, Window Registry, FoxPro, dbase

III plus etc.

MySQL, PostgreSQL, SQL Server,

Oracle, Microsoft Access etc.

1. DATA TYPES

What are Data Types?

A data type is a classification of data which tells the compiler or

interpreter how the user intends to use the data.

A classification or category of various types of data, that states the

possible values that can be taken, how they are stored, and what range

of operations are allowed on them.

SQL DATA TYPES

DATA TYPE SIZE

NUMBER 38

LONG 3 GB

CHAR 2000

VARCHAR 2000

VARCHAR2 4000

DATE

CLOB 4GB

BLOB 4 GB

2. DATA QUERY LANGUAGE

• DQL statements are used to retrieve data stored in relational

databases.

• The main purpose of DQL is to perform queries and filter

data based on specific criteria using the SELECT

command.

• DQL is categorized as one of the four main categories of

SQL sub-languages, which also include Data Definition

Language (DDL), Data Control Language (DCL), and Data

Manipulation Language (DML).

• DQL allows you to retrieve specific data from tables, apply

filters, sort the results, and perform various operations on

the data.

Example: SELECT * FROM TABLE_NAME

3. DATA DEFINITION LANGUAGE

The Data Definition Language (DDL) is a sub-language of SQL used

to define and manage the structure of a database. It includes

commands for creating, altering, and dropping database objects such

as tables, indexes, views, and constraints.

Command Description

Create

This command is used to create the database or its

objects (like table, index, function, views, store

procedure, and triggers).

Alter This is used to alter the structure of the database.

Rename
This is used to rename an object existing in the

database

Comment This is used to add comments to the data dictionary.

Truncate

This is used to remove all records from a table,

including all spaces allocated for the records are

removed.

Drop
This command is used to delete objects from the

database.

4. DATA MANIPULATION LANGUAGE

The Data Manipulation Language (DML) is a sub-language of SQL

used for retrieving, inserting, updating, and deleting data within a

database. It allows users to manipulate the data stored in the database

tables.

The SQL commands that deal with the manipulation of data present in

the database belong to DML or Data Manipulation Language and this

includes most of the SQL statements. It is the component of the SQL

statement that controls access to data and to the database.

DML statements are typically executed by application developers or

users who need to interact with the data in the database. DML

statements can be executed interactively through a database

management system or embedded within a programming language

like Java, Python, or PHP.

Command Description

Insert It is used to insert data into a table.

Update It is used to update existing data within a table.

Delete It is used to delete records from a database table.

5. CONSTRAINTS

SQL constraints are used to specify rules for the data in a table.

Constraints are used to limit the type of data that can go into a table.

This ensures the accuracy and reliability of the data in the table. If

there is any violation between the constraint and the data action, the

action is aborted.

Constraints can be column level or table level. Column level

constraints apply to a column, and table level constraints apply to the

whole table.

The following constraints are commonly used in SQL:

Command Description

Not null Ensures that a column cannot have a NULL value.

Unique Ensures that all values in a column are different

Primary Key
A combination of a NOT NULL and UNIQUE.

Uniquely identifies each row in a table.

Foreign Key
Prevents actions that would destroy links between

tables.

Check
Ensures that the values in a column satisfies a specific

condition.

Default
Sets a default value for a column if no value is

specified.

Create Index
Used to create and retrieve data from the database

very quickly.

6. SQL Clauses

Clauses are in-built functions available to us in SQL. With the help of

clauses, we can deal with data easily stored in the table.

Clauses help us filter and analyze data quickly. When we have large

amounts of data stored in the database, we use Clauses to query and

get data required by the user

Clause Description

Where

It is used to filter records based on a specified

condition. It allows you to retrieve only the records

that meet the specified criteria.

Order by

It is used to sort the result set in ascending or

descending order based on one or more columns. It

allows you to arrange the data in a specific order.

Group by

It is used to group rows based on one or more

columns. It is often used in conjunction with

aggregate functions like SUM, COUNT, AVG, etc.

Having

It is used to filter the grouped rows based on a

condition. It is similar to the WHERE clause but

operates on the grouped data.

Limit

It is used to restrict the number of rows returned by a

query. It is often used with the ORDER BY clause to

retrieve a specific number of top or bottom records.

7. OPERATORS

Operators are the foundation of any programming language. We can

define operators as symbols that help us to perform specific

mathematical and logical computations on operands. In other words,

we can say that an operator operates the operands. SQL operators

have three different categories.

Operators are used to perform various operations on data, compare

values, and combine conditions.

Major Types of SQL Operators

1. Arithmetic operators

2. Comparison operators

3. Logical operators

4. Special Operators

1. Arithmetic Operators

SQL Arithmetic Operators are used to perform mathematical

operations on the data stored in SQL tables.

Operator Description

+
The addition is used to perform an addition operation on

the data values.

-
This operator is used for the subtraction of the data

values.

/
This operator works with the ‘ALL’ keyword and it

calculates division operations.

* This operator is used for multiplying data values.

%
Modulus is used to get the remainder when data is

divided by another.

2. Comparison Operators

Another important operator in SQL is a comparison operator,

which is used to compare one expression’s value to other

expressions.

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

3. Logical Operators

Logical operators are used to combine multiple conditions or

expressions and create complex conditions for filtering data.

They allow us to perform logical operations on Boolean values

or conditions

Operators Description

AND True if all the conditions separated by AND is True

NOT Displays a record if the condition(s) is NOT TRUE

OR True if any conditions separated by OR is True

4. Special Operators:

There are several special operators that provide additional

functionality and perform specific operations.

Here are some commonly used special operators in SQL:

Operators Description

ALL
TRUE if all of the subquery values meet the

condition

ANY
TRUE if any of the subquery values meet the

condition

BETWEEN
TRUE if the operand is within the range of

comparisons

EXISTS
TRUE if the subquery returns one or more

records

IN
TRUE if the operand is equal to one of a list of

expressions

LIKE TRUE if the operand matches a pattern

SOME
TRUE if any of the subquery values meet the

condition

8. SET OPERATORS

Set operators:

They are used to combine the results of two or more SELECT

statements. These operators help in performing operations such as

union, intersection, and difference on the result sets.

Different Types of Set Operators:

• UNION

• UNION ALL

• MINUS/EXCEPT

• INTERSECT

SELECT your_select_query

set_operator

SELECT another_select_query

Rules to use Set Operators:

1. When selecting your columns, the number of columns needs to

match between queries, and the data type of each column needs

to be compatible. So, if you select three columns in the first

query, you need to select three columns in the second query.

2. The data types also need to be compatible, so if you select a

number and two-character types in the first query, you need to

do the same in the second query.

3. If you want to order your results, the ORDER BY must go at the

end of the last query. You can’t add ORDER BY inside each

SELECT query before the set operator

UNION:

The UNION keyword or set operator will allow you to combine the

results of two queries. It removes any duplicate results and shows you

the combination of both.

SELECT your_select_query

UNION

SELECT another_select_query

UNION ALL:

The UNION ALL set operator also combines the results from two

queries. It’s very similar to UNION, but it does not remove

duplicates. It will keep the duplicate values.

SELECT your_select_query

UNION_ALL

SELECT another_select_query

MINUS OR EXCEPT:

The MINUS set operator will return results that are found in the first

query specified that don’t exist in the second query. EXCEPT is the

same as MINUS – they both show results from one query that don’t

exist in another query.

However, MINUS is an Oracle-specific keyword, and EXCEPT is in

other databases such as SQL Server.

SELECT your_select_query

MINUS

SELECT another_select_query

INTERSECT:

The INTERSECT keyword allows you to find results that exist in

both queries. Two SELECT statements are needed, and any results

that are found in both of them are returned if INTERSECT is used.

SELECT your_select_query INTERSECT

another_select_query

9. TRANSACTION CONTROL LANGUAGE

A transaction is the logical work unit that performs a single activity or

multiple activities in a database.

Transaction Control Language commands are used to manage

transactions in the database. These are used to manage the changes

made by DML-statements.

Transaction Control Language (TCL) consists of a set of statements

that are used to manage transactions within a database. Transactions

are used to group multiple database operations into a single logical

unit of work that can be executed atomically (all or nothing), ensuring

data integrity and consistency

Command Description

COMMIT
Commit command is used to permanently save

any transaction into the database.

ROLLBACK

This command restores the database to last

committed state. It is also used with save point

command to jump to a save point in a

transaction.

SAVEPOINT

This command is used to temporarily save a

transaction so that you can roll back to that

point whenever necessary.

RELEASE SAVEPOINT

It is used to remove a previously defined save

point. It releases the save point and makes it

unavailable for rollback

SET TRANSACTION

This statement is used to set properties for the

current transaction, such as isolation level and

transaction access mode.

10. DATA CONTROL LANGUAGE

Data Control Language (DCL) is a subset of SQL statements that are

used to control access to data and manage database privileges. DCL

statements are typically used by database administrators or users with

administrative privileges.

Keyword Description

GRANT allow specified users to perform specified tasks

REVOKE cancel previously granted

DENY deny specified tasks to specified users

11. SQL CASE EXPRESSION

The CASE expression goes through conditions and returns a value

when the first condition is met (like an if-then-else statement). So,

once a condition is true, it will stop reading and return the result. If no

conditions are true, it returns the value in the ELSE clause.

If there is no ELSE part and no conditions are true, it returns NULL.

CASE Syntax

CASE

 WHEN condition1 THEN result1

 WHEN condition2 THEN result2

 WHEN conditionN THEN resultN

 ELSE result

END;

Example:

SELECT OrderID, Quantity,

CASE

 WHEN Quantity > 30 THEN 'The quantity is greater than 30'

 WHEN Quantity = 30 THEN 'The quantity is 30'

 ELSE 'The quantity is under 30'

END AS QuantityText

FROM OrderDetails;

12. CHAR OR STRING FUNCTIONS

(MANIPULATION)

Case Manipulation

In SQL, you can manipulate the case of data using various functions

and statements.

Command Description

Upper()

This function is used to convert a string to uppercase. It

takes a string as input and returns the uppercase version

of that string.

Lower()

This function is used to convert a string to lowercase. It

takes a string as input and returns the lowercase version

of that string.

Initcap()

This function is used to convert the first character of

each word to uppercase and the remaining characters to

lowercase. It takes a string as input and returns the

modified string.

OTHER STRING FUNCTIONS

CHARINDEX():

This function searches for a substring in a string, and returns the

position. If the substring is not found, this function returns 0. It

returns the position of the first occurrence of the substring within the

given string. Note: This function performs a case-insensitive

search.

Syntax: Charindex(substring, string, start)

CONCAT():

This function in SQL is used to concatenate (or join) two or more

strings together. It takes multiple string expressions as arguments and

returns a single string that is the concatenation of those expressions.

Syntax: CONCAT(string1, string2,, string_n)

CONCAT_WS():

 This function in SQL is used to concatenate multiple strings together

with a specified separator. It stands for "concatenate with separator".

Syntax: CONCAT_WS(separator, string1, string2,, string_n)

Length() / Len():

This function returns the number of bytes used to represent an

expression.

Syntax: Length(expression) / Len(expression)

INSTR() / INSTRING():

This function in SQL is used to find the position of a substring within

a string. It returns the position of the first occurrence of the substring

within the string.

Syntax: Instr(string, substring) / Instring(string, substring)

SUBSTR() / SUBSTING():

This function in SQL is used to extract a substring from a string. It

allows you to retrieve a portion of a string based on a specified

starting position.

Syntax: Substr(string, start_position, length) /

Substring(string, start, length)

LTRIM():

Remove leading spaces from the left/beginning of a string.

Syntax: Ltrim(string)

RTRIM():

Remove leading spaces from the right/ending of a string.

Syntax: Rtrim(string)

LPAD():

 This function is used to make the given string of the given size by

adding the given symbol to the left side.

Syntax: Lpad(string, string size, padding character)

RPAD():

 This function is used to make the given string of the given size by

adding the given symbol to the right side.

Syntax: Rpad(string, string size, padding character)

REVERSE():

This function reverses a string and returns the result.

Syntax: Reverse(String)

Replace():

The REPLACE() function replaces all occurrences of a substring

within a string, with a new substring.

Syntax: Replace(string, old_string, new_string)

TRANSLATE():

This function in SQL is used to replace occurrences of specified

characters in a string with other specified characters. It allows you to

perform character-level substitution or deletion within a string.

The TRANSLATE() function returns the string from the first

argument after the characters specified in the second argument are

translated into the characters specified in the third argument.

Note: The TRANSLATE() function will return an error

if characters and translations have different lengths.

Syntax: Translate(string, characters, translations)

My SQL String Functions

Function Description

ASCII Returns the ASCII value for the specific character

CHAR_LENGTH Returns the length of a string (in characters)

CHARACTER_LENGTH Returns the length of a string (in characters)

CONCAT Adds two or more expressions together

CONCAT_WS Adds two or more expressions together with a separator

FIELD Returns the index position of a value in a list of values

FIND_IN_SET Returns the position of a string within a list of strings

FORMAT Formats a number to a format like "#,###,###.##", rounded to a specified

number of decimal places

INSERT Inserts a string within a string at the specified position and for a certain

number of characters

INSTR Returns the position of the first occurrence of a string in another string

LCASE Converts a string to lower-case

LEFT Extracts a number of characters from a string (starting from left)

LENGTH Returns the length of a string (in bytes)

LOCATE Returns the position of the first occurrence of a substring in a string

LOWER Converts a string to lower-case

LPAD Left-pads a string with another string, to a certain length

LTRIM Removes leading spaces from a string

MID Extracts a substring from a string (starting at any position)

POSITION Returns the position of the first occurrence of a substring in a string

REPEAT Repeats a string as many times as specified

REPLACE Replaces all occurrences of a substring within a string, with a new

substring

REVERSE Reverses a string and returns the result

RIGHT Extracts a number of characters from a string (starting from right)

RPAD Right-pads a string with another string, to a certain length

RTRIM Removes trailing spaces from a string

SPACE Returns a string of the specified number of space characters

STRCMP Compares two strings

SUBSTR Extracts a substring from a string (starting at any position)

SUBSTRING Extracts a substring from a string (starting at any position)

SUBSTRING_INDEX Returns a substring of a string before a specified number of delimiter

occurs

TRIM Removes leading and trailing spaces from a string

UCASE Converts a string to upper-case

UPPER Converts a string to upper-case

13. NUMBER FUNCTIONS

Types of number functions:

1. Aggregation functions: An aggregate function or aggregation

function is a function where the values of multiple rows are

processed together to form a single summary value.

2. Analytical Functions: SQL Analytical functions are a set of

powerful tools that enable data analysts and developers to perform

complex calculations and transformations on groups of data,

without the need for complex sub-queries or multiple queries. They

allow you to perform calculations over a set of rows that are related

to each other.

1. Aggregation Functions:

AVG(): The AVG() function returns the average value of an

expression. Note: NULL values are ignored.

Syntax: Avg(expression)

COUNT(): The COUNT() function returns the number of records

returned by a select query. Note: NULL values are not counted.

Syntax: Count(expression)

MIN(): The MIN() function returns the minimum value in a set of

values.

Syntax: Min(expression)

MAX(): The MAX() function returns the maximum value in a set

of values.

Syntax: Max(expression)

SUM(): The SUM() function calculates the sum of a set of values.

Note: NULL values are ignored.

Syntax: Sum(expression)

2. Analytical Functions:

ABS(): This function returns the absolute (positive) value of a

number.

Syntax: ABS(number)

CEIL(): This function returns the smallest integer value that is

bigger than or equal to a number.

Syntax: CEIL(number)

DIV: This function is used for integer division (x is divided by y).

An integer value is returned.

Syntax: x DIV y

FLOOR(): This function returns the largest integer value that is

smaller than or equal to a number.

Syntax: FLOOR(number)

PI(): This function returns the value of PI.

Syntax: PI()

POW(): This function returns the value of a number raised to the

power of another number.

Syntax: POW(x, y)

ROUND(): This function rounds a number to a specified number

of decimal places.

Syntax: ROUND(number, decimals)

TRUNCATE(): This function truncates a number to the specified

number of decimal places.

Syntax: Truncate(number, decimals)

RANK(): This function assigns a rank to each row in a result set

based on the value of a particular column or set of columns.

DENSE_RANK(): This function is similar to RANK(), but it assigns

consecutive ranks to rows with the same value.

ROW_NUMBER(): This function assigns a unique row number to

each row in a result set.

LAG(): This function returns the value of a column from the

previous row in a result set.

LEAD(): This function returns the value of a column from the next

row in a result set.

SIGN(): Returns the sign of a number (-1 for negative, 0 for zero, 1

for positive)

SQRT(): Returns the square root of a number.

14. NULL FUNCTIONS

In SQL, there are several functions that are specifically designed to

work with NULL.

ISNULL(): This function is used to check if an expression is

NULL and optionally replaces it with a specified value. The

ISNULL function checks if the expression is NULL. If it is

NULL, it returns the replacement value; otherwise, it returns the

original expression.

Syntax: Isnull(expression, replacement value)

IFNULL(): IFNULL function is equivalent to the ISNULL

function in SQL Server. Allows us to return the first value if the

value is NULL, and otherwise returns the second value.

Syntax: Ifnull(first value, second value)

COALESCE(): Helps us to return the first non-null values in

the arguments.

NVL(): Helps to replace the NULL value with the desired value

given by the user.

Syntax: Nvl(expression,replacement value)

NVL2(): Checks whether the given expression is null if it is null

it will replace the first replacement value else it will replace

second replacement value.

Syntax: Nvl2(expression,first replacement value, second

replacement value)

15. DATE FUNCTIONS

SQL provides various functions to work with dates.

ADD_MONTHS(): This function in SQL is used to add a

specified number of months to a date. It is commonly used in

databases like Oracle and MySQL.

Syntax: Add_months(date_column, num_months)

MONTHS_BETWEEN(): This function in SQL is used to

calculate the number of months between two dates. It measures

the difference in months between a start date and an end date.

Syntax: Months_between(end_date, start_date)

LAST_DAY(): Extracts the last day of the month for a given

date

Syntax: Last_day(date)

NEXT_DAY(): This function in SQL is used to find the next

specified day of the week after a given date. It is commonly

used to determine the next occurrence of a specific day in a

week.

Syntax: Next_day(date,day)

ADDDATE() / DATE_ADD(): This function in SQL is used to

add a specified interval to a given date. It allows you to add

years, months, days, hours, minutes, and seconds to a date value.

Syntax: Date_add / Add_date (date_column, INTERVAL value

interval_type)

CURRENT_TIME(): Returns the current time

CURRENT_TIMESTAMP(): Returns the current date and

time

DATE(): This function in SQL is used to extract the date part

from a given datetime or timestamp expression. It allows you to

retrieve only the date portion of a datetime value.

Syntax: DATE(datetime_expression)

DATEDIFF(): Returns the number of days between two date

values.

Syntax: Datediff(date1, date2)

DATE_FORMAT(): function in SQL is used to format a date

or datetime value into a specific string representation. It allows

you to customize the output format according to your

requirements.

Syntax: Date_format(date, format)

%Y: Represents the year in 4 digits (e.g., 2023).

%y: Represents the year in 2 digits (e.g., 23).

%m: Represents the month in 2 digits (e.g., 08 for August).

%d: Represents the day in 2 digits (e.g., 23).

%H: Represents the hour in 24-hour format (e.g., 14 for 2 PM).

%h: Represents the hour in 12-hour format (e.g., 02 for 2 PM).

%i: Represents the minutes in 2 digits (e.g., 30).

%s: Represents the seconds in 2 digits (e.g., 45).

%p: Represents AM or PM.

Date_format(order_date, '%Y-%m-%d')

ADDDATE Adds a time/date interval to a date and then returns the date

ADDTIME
Adds a time interval to a time/datetime and then returns the

time/datetime

CURDATE Returns the current date

CURRENT_DATE Returns the current date

CURRENT_TIME Returns the current time

CURRENT_TIMESTAMP Returns the current date and time

CURTIME Returns the current time

DATE Extracts the date part from a datetime expression

DATEDIFF Returns the number of days between two date values

DATE_ADD Adds a time/date interval to a date and then returns the date

DATE_FORMAT Formats a date

DATE_SUB Subtracts a time/date interval from a date and then returns the date

DAY Returns the day of the month for a given date

DAYNAME Returns the weekday name for a given date

DAYOFMONTH Returns the day of the month for a given date

DAYOFWEEK Returns the weekday index for a given date

DAYOFYEAR Returns the day of the year for a given date

EXTRACT Extracts a part from a given date

FROM_DAYS Returns a date from a numeric datevalue

HOUR Returns the hour part for a given date

LAST_DAY Extracts the last day of the month for a given date

LOCALTIME Returns the current date and time

LOCALTIMESTAMP Returns the current date and time

MAKEDATE
Creates and returns a date based on a year and a number of days

value

MAKETIME
Creates and returns a time based on an hour, minute, and second

value

MICROSECOND Returns the microsecond part of a time/datetime

MINUTE Returns the minute part of a time/datetime

MONTH Returns the month part for a given date

MONTHNAME Returns the name of the month for a given date

NOW Returns the current date and time

PERIOD_ADD Adds a specified number of months to a period

PERIOD_DIFF Returns the difference between two periods

QUARTER Returns the quarter of the year for a given date value

SECOND Returns the seconds part of a time/datetime

SEC_TO_TIME Returns a time value based on the specified seconds

STR_TO_DATE Returns a date based on a string and a format

SUBDATE Subtracts a time/date interval from a date and then returns the date

SUBTIME
Subtracts a time interval from a datetime and then returns the

time/datetime

SYSDATE Returns the current date and time

TIME Extracts the time part from a given time/datetime

TIME_FORMAT Formats a time by a specified format

TIME_TO_SEC Converts a time value into seconds

TIMEDIFF Returns the difference between two time/datetime expressions

TIMESTAMP Returns a datetime value based on a date or datetime value

TO_DAYS Returns the number of days between a date and date "0000-00-00"

WEEK Returns the week number for a given date

WEEKDAY Returns the weekday number for a given date

WEEKOFYEAR Returns the week number for a given date

YEAR Returns the year part for a given date

YEARWEEK Returns the year and week number for a given date

16. PSUDO COLUMNS

In SQL, pseudo columns are special read-only columns that represent

additional information about rows or provide metadata related to the

query or database.

A pseudo-column behaves like a table column but is not actually

stored in the table. You can select from pseudo-columns, but you

cannot insert, update, or delete their values. A pseudo-column is also

similar to a function without arguments.

CURRVAL and NEXTVAL: A sequence is a schema object that can

generate unique sequential values. These values are often used for

primary and unique keys. You can refer to sequence values in SQL

statements with these psudo columns:

CURRVAL: Returns the current value of a sequence.

NEXTVAL: Increments the sequence and returns the next value.

Examples:

SELECT STUDENTSEQ.currval FROM DUAL;

INSERT INTO STUDENT VALUES (STUDENTSEQ.nextval,

‘BISHAL’, ‘JAVA’, 7902);

LEVEL: For each row returned by a hierarchical query, the LEVEL

pseudocolumn returns 1 for a root node, 2 for a child of a root, and so

on.

ROWNUM: Oracle engine maintains the number of each record

inserted by users in table. By the help of ROWNUM clause we can

access the data according to the record inserted.

Example:

SELECT * FROM EMP WHERE ROWNUM <= 3;

ROWID: For each row in the database, the ROWID pseudocolumn

returns a row\’s address. The ROWID contains 3 information about

row address:

FileNo: FileNo means Table Number.

DataBlockNo: DataBlockNo means the space assigned by the oracle

SQL engine to save the record.

RecordNo: Oracle engine maintains the record number for each

record.

Example:

SELECT ROWID, ename FROM emp WHERE deptno = 20;

17. VIEW

View: In SQL, a view is a virtual table based on the result-set of an

SQL statement. A view contains rows and columns, just like a real

table. The fields in a view are fields from one or more real tables in

the database.

Here are some key points about views in SQL:

• Views are kind of virtual tables that don't hold the actual data.

• Views can be created from one or many tables, depending on the

written SQL query.

• Views allow you to simplify complex queries by creating a

virtual table with the desired columns and rows.

• Views can be used to restrict access to certain columns or rows

of a table, providing an additional layer of security.

• Views can be used to present data in a customized format,

combining columns from different tables or applying

calculations.

• Views can be updated, inserted into, or deleted from, depending

on the underlying tables and the view's definition.

Creating View:

CREATE VIEW view_name as (Select Query)

Example: CREATE VIEW Customers

SELECT CustomerName, ContactName

FROM Customers

WHERE Country = 'India';

Updating a View:

A view can be updated with the CREATE OR REPLACE

VIEW statement.

Syntax: Replace VIEW view_name as (Select Query)

Deletinng a View:

A view is deleted with the DROP VIEW statement.

Syntax: DROP VIEW view_name;

Let's break down the Syntax:

CREATE VIEW: This keyword is used to indicate that you want to

create a view.

[view_name] Specify the name you want to give to the view.

AS: This keyword is used to indicate that you're defining the view.

SELECT [column1, [column2]), ...: Specify the columns you want

to include in the view.

FROM [table_name] Specify the table(s) you want to retrieve data

from.

WHERE [condition] (Optional) You can add a condition to filter the

data if needed.

18. MATERIALIZED VIEW

Materialized View: A materialized view in SQL is a database object

that contains the results of a query. It takes the regular view, which is

a virtual table based on an SQL statement, and materializes it by

proactively computing the results and storing them in a "virtual" table.

Here are some key points about materialized views in SQL:

• Materialized views are used when data needs to be accessed

frequently and the data in the underlying tables does not get

updated on a frequent basis.

• They are useful when the view is accessed frequently, as they

save computation time by storing the precomputed results in the

database.

• Materialized views can be created using the CREATE

MATERIALIZED VIEW statement in SQL.

• The FROM clause of the query used to create a materialized

view can reference tables, views, and other materialized views.

• Materialized views can improve the performance of complex

queries, especially those involving joins and aggregations.

• They are particularly beneficial in scenarios where performance

tuning for queries is needed.

Syntax:

CREATE MATERIALIZED VIEW [view_name] AS (select

query)

Deletinng a View

A view is deleted with the DROP VIEW statement.

Syntax: DROP MATERIALIZED VIEW view_name

Views Materialized Views

Query expression are stored in

the databases system, and not the

resulting tuples of the query

expression.

Resulting tuples of the query

expression are stored in the databases

system.

Views needs not to be updated

every time the relation on which

view is defined is updated, as the

tuples of the views are computed

every time when the view is

accessed.

Materialized views are updated as

the tuples are stored in the database

system. It can be updated in one of

three ways depending on the

databases system as mentioned

above.

It does not have any storage cost

associated with it.

It does have a storage cost associated

with it.

It does not have any updating

cost associated with it.

It does have updating cost associated

with it.

There is an SQL standard of

defining a view.

There is no SQL standard for

defining a materialized view, and the

functionality is provided by some

databases systems as an extension.

Views are useful when the view

is accessed infrequently.

Materialized views are efficient

when the view is accessed frequently

as it saves the computation time by

storing the results beforehand.

19. JOINS

A JOIN clause is used to combine rows from two or more tables,

based on a related column between them.

Joins allow you to retrieve data from multiple tables in a single query

and make it possible to establish relationships between tables.

Types of Joins:

1. Inner Join: Returns records that have matching values in both

tables

2. Right Join: Returns all records from the right table, and the

matched records from the left table

3. Left Join: Returns all records from the left table, and the matched

records from the right table

4. Full Outer Join: Retrieves all records when there is a match in

either the left or right table. If there is no match, NULL values are

returned for the non-matching table.

5. Cross Join: Returns all records from both tables

1. Inner Join: This join / keyword selects records that have matching

values in both tables.

Syntax:

SELECT column_name(s) FROM table1

INNER JOIN table2

ON table1.column_name = table2.column_name;

2. Right Join: This join / keyword returns all records from the right

table (table2), and the matching records (if any) from the left table

(table1).

Syntax:

SELECT column_name(s) FROM table1

RIGHT JOIN table2

ON table1.column_name = table2.column_name;

3. LEFT JOIN: This join / keyword returns all records from the left

table (table1), and the matching records (if any) from the right

table (table2).

Syntax:

SELECT column_name(s) FROM table1

LEFT JOIN table2

ON table1.column_name = table2.column_name;

4. Full Outer Join: Retrieves all records when there is a match in

either the left or right table. If there is no match, NULL values are

returned for the non-matching table.

Syntax: Syntax:

SELECT column_name(s) FROM table1

FULL OUTER JOIN table2

ON table1.column_name = table2.column_name;

5. Cross Join: Produces the Cartesian product of both tables,

resulting in a combination of every row from the first table with

every row from the second table.

Syntax:

SELECT column_name(s)

FROM table1

CROSS JOIN table2;

20. SUB-QUERIES

In SQL, a subquery (also known as a nested query or inner query) is a

query that is embedded within another query. It allows you to use the

result of one query as a part of another query, enabling you to write

more complex and powerful SQL statements.

1. Syntax: A subquery is enclosed within parentheses and can be

placed in various parts of a SQL statement, such as the SELECT,

FROM, WHERE, or HAVING clauses. The result of the subquery

is then used in the outer query to perform further filtering,

calculations, or comparisons.

2. Usage: Subqueries can be used for different purposes, such as:

• Filtering: Using a subquery in the WHERE clause to filter rows

based on a condition from another table or query.

• Comparison: Comparing a value to the result of a subquery

using comparison operators like =, >, <, etc.

• Calculation: Performing calculations or aggregations on a

subset of data obtained from a subquery.

• Nesting: Nesting multiple levels of subqueries to build

complex queries.

A subquery is also called an inner query or inner select, while the

statement containing a subquery is also called an outer query or outer

select.

Subquery rules

A subquery is subject to the following restrictions:

• The select list of a subquery introduced with a comparison

operator can include only one expression or column name

(except that EXISTS and IN operate on SELECT * or a list,

respectively).

• If the WHERE clause of an outer query includes a column

name, it must be join-compatible with the column in the

subquery select list.

• The ntext, text, and image data types can't be used in the select

list of subqueries.

• Because they must return a single value, subqueries introduced

by an unmodified comparison operator (one not followed by the

keyword ANY or ALL) can’t include GROUP BY and

HAVING clauses.

• The DISTINCT keyword can't be used with subqueries that

include GROUP BY.

• The COMPUTE and INTO clauses can't be specified.

• ORDER BY can only be specified when TOP is also specified.

• A view created by using a subquery can't be updated.

• The select list of a subquery introduced with EXISTS, by

convention, has an asterisk (*) instead of a single column name.

The rules for a subquery introduced with EXISTS are the same as

those for a standard select list, because a subquery introduced

with EXISTS creates an existence test and returns TRUE or FALSE,

instead of data.

TYPES OF SUB-QUERIES:

1. Scalar Sub-Query

2. Single Row Sub-Query

3. Multiple Row Sub-Query

4. Corelated Sub-Query

1. Scalar Subquery

A scalar subquery is a subquery that returns a single value. It is

typically used in situations where you need to retrieve a single

value for comparison or calculation purposes.

For example:

SELECT column1

FROM table1

WHERE column2 = (SELECT MAX(column2) FROM table2);

In this example, the subquery (SELECT MAX(column2) FROM

table2) returns the maximum value of column2 from table2, which is

then used for comparison in the outer query.

2. Single-Row Subquery

 A single-row subquery is a subquery that returns a single row of

data. It is commonly used in situations where you need to

retrieve a single row for filtering or comparison purposes.

For example:

SELECT name

FROM customers

WHERE customer_id = (SELECT customer_id FROM orders

WHERE order_id = 123);

In this example, the subquery (SELECT customer_id FROM orders

WHERE order_id = 123) returns the customer_id for a specific order,

which is then used in the outer query to retrieve the corresponding

customer name.

3. Multi-Row Subquery

A multi-row subquery is a subquery that returns multiple rows

of data. It is often used with operators like IN, ANY, or ALL to

compare a value to a set of values returned by the subquery.

For example:

SELECT name

FROM customers

WHERE customer_id IN (SELECT customer_id FROM orders

WHERE order_date = '2022-01-01');

In this example, the subquery (SELECT customer_id FROM orders

WHERE order date = '2022-01-01') returns a set of customer IDs for

orders placed on a specific date. The outer query then retrieves the

customer names for those IDs.

4. Correlated Subquery

A correlated subquery is a subquery that refers to the outer

query, allowing data from the outer query to be used in the

subquery. It is useful when you need to retrieve data based on

values from the outer query.

For example:

SELECT name

FROM customers c

WHERE EXISTS (SELECT 1 FROM orders o WHERE

o.customer_id = c.customer_id);

In this example, the subquery (SELECT 1 FROM orders o WHERE

o.customer_id = c.customer_id) correlates with the outer query by

using the customer ID from the outer query. The outer query retrieves

the names of customers who have placed orders.

These are the main types of subqueries in SQL. Each type serves a

different purpose and can be used to solve specific problems when

querying your database. Understanding these types of subqueries will

allow you to write more advanced and efficient SQL queries.

